
Integrated Solar Thermal - 2 Stage GSHP - 

Desuperheater - 3rd Stage Propane Furnace System 

 

Plumbing Schematic & eZEio Integrated Controls  

(Residential 2 Pipe Configuration) 

 

 

Circulatory Pump Loops 

 

A = Solar Transfer - solar thermal heat exchanger #1 loop to transfer tank loop 

B = GSHP Battery – transfer tank to GSHP to 2500 gal. thermal battery loop 

C = Geothermal Earth Loop – 300’ geothermal earth loop to transfer tank loop 

D = Solar Domestic Hot Water (DHW) – preheat tank to solar thermal heat exchanger #2 loop 

E = Solar Primary - solar thermal heat exchanger #2 loop to solar collector 



Temperature & Humidity Sensors 

 

T1 = Transfer Tank (GSHP EWT)  T8 = Preheat Tank for Domestic Hot Water (DHW) 

T2 = Thermal Battery    T9 = GSHP LWT (leaving water temperature) 

T3 = Solar Collector    T10 = Outside Air (reset) 

T4 = Thermal Battery Return  T11 = Inside Air & Humidity - Zone 1 (feedback) 

T5 = Geothermal Loop Return  T12 = Inside Air & Humidity - Zone 2 (feedback) 

T6 = Discharge Air    T13 = Inside Air & Humidity - Zone 3 (feedback) 

T7 = Solar Thermal Battery   Y1 = 1st Stage GSHP Compressor Terminal 

      Y2 = 2nd Stage GSHP Compressor Terminal 

 

Most HVAC, solar thermal, solar photovoltaic (PV), domestic hot water (DHW), and energy recovery 

ventilators (ERVs) have individual controls that are not adequate for integrated systems like that 

described above. A single device that can provide integrated controls for multiple energy resources 

through custom hardware and software development is appealing. This is particularly true if such an 

integrated device can provide valuable data logging, and time saving diagnostics-troubleshooting tools 

for HVAC technicians and third party monitoring including state-of-the-art analytics. 

In terms of energy efficiency, the Oak Ridge National Lab and leading control manufacturers such as 

tekmar reveal that integration of GSHPs, hydronic/radiant floor heating, thermal batteries (including 

high thermal mass ICF/concrete structures), cooling, and DHW with a second stage fan-coil/air-handler 

can reduce HVAC energy consumption by up to 50% in comparison with forced air alone. When 

programmable features such as Outside Temperature Reset, Indoor Temperature Feedback, Dew Point 

Reset, Strategic Zoning, Zoning Synchronization, Data Logging, Basic Analytics, and Smart Controls 

are programmed into the eZEio Controller and integrated with Real-time Monitoring, Warning 

Notifications, and state-of-the-art Maintenance & Diagnostic Systems, this can result in unprecedented 

energy efficiencies. 

 

The eZEio™ Integrated Controller  

The eZEio™ Integrated Controller is a general 

purpose Input/Output device, capable of 

monitoring, logging and controlling a wide range of 

devices and equipment through industry standard 

connections over the Internet.  

The eZEio™ Integrated Controller automatically 

establishes a secure link to an array of redundant 

and secure servers, allowing live access from a 

standard web browser and eliminating the need for 

fixed IP, complex firewall setup or special software. 

Multiple eEZio™ Controllers can be set up under a 

single user account, thus providing a simple 



overview of the status of any number of sites spread out geographically from anywhere in the world. 

All configuration, control, and access is accomplished by logging into the secure servers via the Internet 

at www.ezecontrol.com.  

The eZEio™ controller is available in the following configurations: sensors GSM/3G/GPS 

 

 

Base Model 

The eZEio connects to the Internet via standard 10/100 Ethernet and uses wired peripherals via Modbus, 

MicroLAN and discrete in/outputs. 

 

Wireless Sensors 

The eZEio can be configured with a wireless transceiver module to allow for wireless sensors and 

expansion units. The wireless protocol is encrypted and only wireless devices from eZE System can 

communicate with the eZEio controller over this network. Typical indoor range is about 30m (100ft) but 

that obviously depends on wall materials and other environmental factors. 

 

GSM/3G/GPS 

When configured with a built-in GSM modem, the eZEio can communicate with the Internet via cell 

service. This requires service from a local cell provider and only GSM systems are supported. The 

controller will use the physical Ethernet path if it is available, but automatically switches to GSM if it 

can't communicate over Ethernet. 

The GSM modem also supports GPS, so with the addition of an external antenna, the controller will 

have access to its position in real time. All versions run the same software and all other features are the 

same. 

Some features depend on the service level. All versions come with four months of Basic Service, which 

allows for logging data from five inputs. See the company web page at www.ezesys.com for details 

about service levels and monthly cost for advanced services.  

The eZEio Controller operates using the PAWN programming/scripting language to provide custom 

integrated controls for multiple sources of energy resources at a fraction of the price of purchasing 

individual controls that are often incompatible. 

http://www.ezecontrol.com/
http://www.ezesys.com/


 

Custom Programming of eZEio Integrated Controls 

Whatever the language or tool, programming is a craft that requires a particular approach to problem 

solving —or even a particular way of thinking about activities and information. It centers around 

analysis: “what needs to be done under which conditions and criteria”, reductionism: subdividing a large 

task into a hierarchy of smaller tasks, and synthesis: bringing it all together. 

Before starting to build a program, one must understand the problem at hand. Once you have a good idea 

of what the program must do, you have to think about a solution in small discrete and deterministic 

steps. Each step may have inputs and outputs and you can describe the function of the steps in terms of 

the inputs and outputs alone—this is what the term discrete refers to.  

 

Formulating Operational Controls 

Conditions Affecting Circulation Pump A (CPA)  

BOTH LINES IN SHOULDERS – 1ST LINE ONLY IN WINTER 

If T3 > T1+5, then turn CPA ON until T3 < T1+1, then turn CPA OFF 

If T8 < 90°F, then turn CPA OFF until T8 > 120°F, then turn CPA ON 

If a conflict exists, OFF trumps ON 

 

Run Away Conditions: 

If T3 > 200°F, then turn CPA OFF 

If T1 > 100°F, then turn CPA OFF 

 

Fail Safe Conditions: 

If communication is lost, FAIL OFF 

 

Conditions Affecting Circulation Pump B (CPB) 

If T1 > T2+5, then turn CPB ON until T1 < T2+1, then turn CPB OFF 

If T2 > 70°F, then turn CPB ON until T2 < 66°F, then turn CPB OFF 

If the compressor Y is ON, then turn CPB ON 

If the compressor Y is OFF, then turn CPB OFF 

If a conflict exists, ON trumps OFF 

 

Fail Safe Conditions: 

If communication is lost, FAIL ON 

 

Conditions Affecting Circulation Pump C (CPC)  

If T1 < 42°F, then turn CPC ON until T1 > 45°F, then turn CPC OFF  

If T1 > 70°F, then turn CPC ON until T1 < 66°F, then turn CPC OFF 

 

Fail Safe Conditions: 

If communication is lost, FAIL ON 



 

Conditions Affecting Circulation Pump D (CPD) 

ON IN SUMMER AND SHOULDERS – OFF IN WINTER 

If T3 > T8+5, then turn CPD ON until T3 = T8+1, then turn CPD OFF 

 

Run Away Conditions: 

If T3 > 200°F, then turn CPD OFF 

 

Fail Safe Conditions: 

If communication is lost, FAIL OFF 

 

 

Conditions Affecting Circulation Pump E (CPE) 

If either CPA or CPD are turned ON, then turn CPE ON 

If CPA and CPD are both turned OFF, then turn CPE OFF 

 

Fail Safe Conditions: 

If communication is lost, FAIL OFF 

 

As soon as you cannot explain a step without referring to other “steps” in the program, you have either a 

hidden input or an implied assumption, and you would do well to reconsider the analysis. The term 

deterministic is meant to say that the functioning of a step or a sequence of steps may not depend on 

(human) interpretation or judgment.  

Many beginning programmers find it helpful to write down these steps in a flow chart (or some other 

schematic). During the analysis of the problem and its solution, you will often find that some steps are 

rather big —too big to be annotated in a little box in a flow chart. Such larger steps must be subdivided 

further, perhaps in another flow chart. 

 

Basic Flow Chart/Wiring Schematic of eZEio Integrated Control System 

[eZEio Controller, inputs and outputs, one wire (cat 5) connections, ModBus (both sensor and control 

inputs and outputs) MicroLAN (only sensor inputs and outputs) Firmware schematics, etc., for 

Integrated Wiring of Controls and System Components including Data Logging, Basic and Advanced 

Web-based Monitoring, Warning Notifications, & Diagnostic Tools] 

 



 

 

Though this installation is using a 6 zone switching relay box manufactured by TACO, future 

installations may use ModBus instead. 

A flow chart or wiring schematic, such as the one depicted above, shows start & termination points, 

processing, input & output functions, decisions and loops. Flow charts are among the oldest schematics 

for software.  

What most people perceive as “programming”, the act of writing code in a programming language, only 

begins after the above analysis has been completed. Many programming languages exist, and what they 

all have in common is that they have a strict and rigid “grammar” (called syntax) and the ability to 

invent new “words” from a very small core vocabulary. The biggest difference between programming 

languages and natural languages, however, is that programming languages were devised to allow 

communication with a machine. A machine, or another programmable device, does exactly as instructed 

—no more, no less. A machine does not assume anything about its environment; it neither anticipates 

any future instructions, nor remembers what it did a fraction of a second ago. The “small, discrete, 

deterministic steps” that the preceding paragraphs mentioned must, hence, also be precise and 

comprehensive. 



Flow charts, or other kinds of charts, can still be made with pencil on paper, but building a program that 

a computer can run requires special tools —tools with names like compiler, linker/locator, editor and 

debugger. Most programmers are also “power users” on their computers and the tools that they use are 

frequently less polished than your favorite office suite. On the other hand, the tools made for 

programmers often focus on letting you work efficiently, rather than wasting your time with animations, 

silly sounds and other attempts to look cool. Briefly: be not deceived by the Spartan interface of 

programmer’s tools. 

Scripting programs for HVAC systems, even elaborate integration of solar thermal, solar PV, GSHPs, 

desuperheaters, thermal battery systems, and energy recovery ventilators (ERVs), etc., are relatively 

simple and straightforward to conceive, even for multiple stage heating, cooling, domestic hot water, 

and ERV systems. 

Integrated Controls, LLC is developing a library of scripts for the eZEio Integrated Control Systems. 

Each of these integrated controls is being tested and proven in the field for use by HVAC, solar thermal, 

solar PV, thermal battery, and ERV installers. 

 

PAWN Scripting for eZEio Integrated Controller  

[Bolded blue text in brackets and yellow highlighted text is inserted for instructional purposes only, it is not 

part of the script]  

 
[Input Definitions] 

#define IN_T1   1 

#define IN_T2   2 

#define IN_T3   3 

#define IN_T8   8 

#define IN_Y   14 

 

#define IN_LOGA   9 

#define IN_LOGB   10 

#define IN_LOGC   11 

#define IN_LOGD   12 

#define IN_LOGE   13 

 

[Output Definitions] 

#define OUT_A   1 

#define OUT_B   2 

#define OUT_C   3 

#define OUT_D   4 

#define OUT_E   5 

 

#define OUT_A_SUMMER  7  [switch for summer status] 

#define OUT_A_WINTER  8  [switch for winter status] 

 

[Operational Definitions] 

#define CHARGEDIFF  50   [ΔT 5°F turn ON] 

#define CHARGEDIFFOFF  10  [ΔT 1°F turn OFF] 



 

#define SOLARCHARGE  1200  [solar DHW preheat tank >120°F] 

#define SOLARCHARGEOFF  900  [solar DHW preheat tank <90°F]  

 

#define BATTTFER  700   [>70°F transfer tank threshold] 

#define BATTTFEROFF  660  [<66°F transfer tank threshold] 

 

#define GROUNDLOOPLOW  420  [<42°F winter low threshold, turn ON ground loop] 

#define GROUNDLOOPLOWOFF 450  [>45°F winter high threshold, turn OFF ground loop] 

#define GROUNDLOOPHIGH  700  [>70°F summer high threshold, turn ON ground loop] 

#define GROUNDLOOPHIGHOFF 660  [<66°F summer low threshold, turn OFF ground loop] 

 

#define OVERTEMPSOLAR  2000  [>200°F over-ride/shut OFF solar CP] 

#define OVERTEMPTRANSFERTANK 1000 [<100°F over-ride/shut OFF transfer tank CP] 

 

// Month, Day      [calendar – seasonal parameters for specific locality] 

new const SEASONS[] = { 

  4, 15,  // Summer start  

  9, 15, // Summer end 

  10, 1,  // Winter start 

  2, 18  // Winter end 

}; 

 

 

new T1, T2, T3, T8; 

new tick = 0; 

 

main()       [Start-up Script] 

{ 

  // This code will run on startup only 

  PDebug("Hello world!"); 

  SetOutput(OUT_A_SUMMER, 1); 

  SetOutput(OUT_A_WINTER, 1); 

} 

 

  

// returns 1 for summer, 2 for winter or 0 for fall/spring 

findSeason() 

{ 

    if((GetMonth() > SEASONS[0]) || (GetMonth() == SEASONS[0] && GetDay() >= SEASONS[1])) 

 if((GetMonth() < SEASONS[2]) || (GetMonth() == SEASONS[2] && GetDay() < SEASONS[3])) 

     return 1; // Summer! 

 

    if((GetMonth() > SEASONS[4]) || (GetMonth() == SEASONS[4] && GetDay() >= SEASONS[5])) 

     return 2; // Winter! 

    if((GetMonth() < SEASONS[6]) || (GetMonth() == SEASONS[6] && GetDay() < SEASONS[7])) 

        return 2; // Winter 

         

    return 0; 

} 

  



mlTempF(inputno) 

{ 

 new x = GetInputValue(inputno) * 1125; 

 return (x-670000)/1000; 

} 

 

processA()      [Associated with Conditions for CPA] 

{ 

 static c1 = 0; 

 static c2 = 0; 

 new x = 1; 

  

 if( T3 > (T1+CHARGEDIFF) )  c1 = 1;  

 if( T3 < (T1+CHARGEDIFFOFF) )  c1 = 0;  

   

 if( T8 > SOLARCHARGE )   c2 = 1; 

 if( T8 < SOLARCHARGEOFF )  c2 = 0; 

    

 if(GetOutputState(OUT_A_WINTER)) {  // Winter switch is ON 

  if(GetOutputState(OUT_A_SUMMER)) { // Summer switch is ON 

   if( c1==0 || c2==0 ) 

    x = 0; 

  } 

  else {     // Summer switch is OFF 

   if( c1==0 ) 

    x = 0; 

  } 

 } 

 else {      // Winter switch is OFF 

  if(GetOutputState(OUT_A_SUMMER)) // ..summer is ON 

   x = 0;    // Never activate  

 } 

    

 if( T3 > OVERTEMPSOLAR ) 

  x = 0; 

 if( T1 > OVERTEMPTRANSFERTANK ) 

  x = 0; 

 

 SetOutput(OUT_A, x); 

} 

 

processB()      [Associated with Conditions for CPB] 

{ 

 static c1 = 0; 

 static c2 = 0; 

 

 if( T1 > (T2+CHARGEDIFF) ) c1 = 1; 

 if( T1 < (T2+CHARGEDIFFOFF) ) c1 = 0; 

  

 if( T2 > BATTTFER )  c2 = 1; 

 if( T2 < BATTTFEROFF )  c2 = 0; 



 

  

 if( GetInputState(IN_Y) || c1 || c2 ) 

  SetOutput(OUT_B, 0); // Blue light ON 

 else 

  SetOutput(OUT_B, 1); // Blue light OFF 

   

} 

 

processC()      [Associated with Conditions for CPC] 

{ 

 static c1 = 0; 

 static c2 = 0; 

 

 if( T1 < GROUNDLOOPLOW ) c1 = 1; 

 if( T1 > GROUNDLOOPLOWOFF ) c1 = 0; 

 

 if( T1 > GROUNDLOOPHIGH ) c2 = 1; 

 if( T1 < GROUNDLOOPHIGHOFF ) c2 = 0; 

  

 if( c1 || c2 ) 

  SetOutput(OUT_C, 0); 

 else 

  SetOutput(OUT_C, 1); 

} 

 

processD()      [Associated with Conditions for CPD] 

{ 

 static c1 = 0; 

 

 if( T3 > (T8+CHARGEDIFF) ) c1 = 1; 

 if( T3 < (T8+CHARGEDIFFOFF) ) c1 = 0; 

  

 if(GetOutputState(OUT_A_WINTER))   // Winter switch is ON  

  if(GetOutputState(OUT_A_SUMMER) == 0) // ..and summer is OFF 

   c1 = 0;    // Always turn off D 

  

 if( T3 > OVERTEMPSOLAR ) 

  c1 = 0;  

  

 SetOutput(OUT_D, c1); 

} 

 

processE()      [Associated with Conditions for CPE] 

{ 

 new x = 0; 

  

 if( GetOutputState(OUT_A) ) 

  x = 1; 

 if( GetOutputState(OUT_D) ) 

  x = 1; 



   

 SetOutput(OUT_E, x); 

} 

  

@Tick(uptime)      [General System Programming] 

{ 

  // This event is called once per second 

  // uptime is the number of seconds since last system reset 

 

 T1 = mlTempF(IN_T1); 

 T2 = mlTempF(IN_T2); 

 T3 = mlTempF(IN_T3); 

 T8 = mlTempF(IN_T8); 

 

 if( GetOutputState(OUT_A_SUMMER) || GetOutputState(OUT_A_WINTER) ) { 

 

  if(--tick <= 0) { 

   new s = findSeason(); 

   if(s == 1) { 

    SetOutput(OUT_A_SUMMER, 1); 

    SetOutput(OUT_A_WINTER, 0);     

   } 

   else 

   if(s == 2) { 

    SetOutput(OUT_A_SUMMER, 0); 

    SetOutput(OUT_A_WINTER, 1); 

   } 

   else { 

    SetOutput(OUT_A_SUMMER, 1); 

    SetOutput(OUT_A_WINTER, 1); 

   } 

   tick = 600;  // Check season every 10 minutes 

  } 

  

  processA(); 

  processB(); 

  processC(); 

  processD();  

  processE();   

 } 

  

 SetInputValue(IN_LOGA, GetOutputState(OUT_A)); 

 SetInputValue(IN_LOGB, GetOutputState(OUT_B)); 

 SetInputValue(IN_LOGC, GetOutputState(OUT_C)); 

 SetInputValue(IN_LOGD, GetOutputState(OUT_D)); 

 SetInputValue(IN_LOGE, GetOutputState(OUT_E)); } 

 

@Alarm(sourcetype, sourceno, alarmno)  [System Alarm Notifications] 

{ 

  // Any alarm will trigger this event 

  // sourcetype is one of SOURCE_INPUT, SOURCE_SCHEDULE, SOURCE_TIMER 



  // sourceno is the input/schedule/timer number 

  // alarmno is the alarm number (1-4) 

} 

 

@Restore(sourcetype, sourceno, alarmno) 

{ 

  // Any restore will trigger this event 

  // sourcetype is one of SOURCE_INPUT, SOURCE_SCHEDULE, SOURCE_TIMER 

  // sourceno is the input/schedule/timer number 

  // alarmno is the alarm number (1-4) 

} 

 

@Timer(timerno) 

{ 

  // called when a timer set by SetTimer triggers } 

 

@ModbusReply(address, command, length, data[]) { 

  // called as a result of ModbusSend when a modbus device sends a reply 

  // address is the device modbus address 

  // command is the modbus command 

  // length is the number of bytes received (minus address, command and checksum) 

  // data is the payload data, starting with the byte after the command byte } 

 

Connections & Installation 

Things to consider before installing the eZEio™ controller. The ezeio™ controller is designed for 

indoor use and should be installed in a dry and clean location. Do not expose the controller to rain or 

water, and avoid extreme temperatures. See the technical specifications for acceptable ranges. 

The ezeio™ controller is a low voltage device. Never connect high voltage to the inputs or outputs, and 

only use the supplied AC adapter to power the controller. 

Do not run wires that connects to the ezeio™ (Inputs / outputs / MicroLAN /Ethernet / ModBus / power 

or antenna) together with high voltage wiring. Use separate conduits whenever possible, and avoid 

environments with excessive RF or magnetic radiation as this may interfere or even destroy the 

eZEio™ controller. 

Take necessary precautions to avoid large static discharges to the eZEio™ connections. 

 

WARNING ABOUT MICROLAN AND PHONE CONNECTORS 

Never use connectors or wires designed for phone networks for connecting MicroLAN devices. Phone 

connectors usually alter the polarity, and will permanently damage MicroLAN devices, voiding 

warranty.  

 

Testing & Troubleshooting 



Once we have gone through it all —when the analysis of the requirements and the decomposition into 

small steps lie behind us and after having keyed in the program code, we can run the program and watch 

its output. Often, the program does not behave as intended right away. It may not even run in its very 

first version. This may be due to simple typing errors, which are easily fixed; but it may also be due to 

the programmer not properly understanding the problem. Naturally, we now have to find and fix the 

errors in the program, which is a cycle very similar to the one for the initial development: 

 understand the program’s behavior and what the program should be doing instead 

 find a solution/fix in small discrete steps, 

 write these steps in a programming language, 

 and review and test the program. 

 

 

 


